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Abstract

Financial distress is more likely to happen in bad times. The present value of distress costs therefore
depends on risk premia. We estimate this value using risk-adjusted default probabilities derived
from corporate bond spreads. For a BBB-rated firm, our benchmark calculations show that the
NPV of distress is 4.5% of pre-distress value. In contrast, a valuation that ignores risk premia
generates an NPV of 1.4%. We show that marginal distress costs can be as large as the marginal
tax benefits of debt derived by Graham (2000). Thus, distress risk premia can help explain why
firms appear to use debt conservatively.
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Financial distress has both direct and indirect costs (Warner (1977), Altman (1984), Franks and

Touros (1989), Weiss (1990), Asquith, Gertner, and Scharfstein (1994), Opler and Titman (1994),

Sharpe (1994), Denis and Denis (1995), Gilson (1997), Andrade and Kaplan (1998), Maksimovic and

Phillips (1998)). Whether such costs are high enough to matter for corporate valuation practice

and capital structure decisions is the subject of much debate. Direct costs of distress, such as

litigation fees, are relatively small.1 Indirect costs, such as loss of market share (Opler and Titman

(1994)) and inefficient asset sales (Shleifer and Vishny (1992)), are believed to be more important,

but they are also much harder to quantify. In a sample of highly leveraged firms, Andrade and

Kaplan (1998) estimate losses in value given distress on the order of 10% to 23% of pre-distress

firm value.2

Irrespective of their exact magnitudes, ex-post losses due to distress must be capitalized to

assess their importance for ex-ante capital structure decisions. The existing literature argues that

even if ex-post losses amount to 10% to 20% of firm value, ex-ante distress costs are modest because

the probability of financial distress is very small for most public firms (Andrade and Kaplan (1998),

Graham (2000)). In this paper, we propose a new way of calculating the net present value (NPV) of

financial distress costs. Our results show that the existing literature substantially underestimates

the magnitude of ex-ante distress costs.

A standard method of calculating ex-ante distress costs is to multiply Andrade and Kaplan’s

(1998) estimates of ex-post costs by historical probabilities of default (Graham (2000), Molina

(2005)). However, this calculation ignores capitalization and discounting. Other researchers assume

risk neutrality and discount the product of historical probabilities and losses in value given default

by a risk-free rate (e.g., Altman (1984)).3 This calculation, however, ignores the fact that distress

is more likely to occur in bad times.4 Thus, risk-averse investors should care more about financial

distress than is suggested by risk-free valuations. Our goal in this paper is to quantify the impact

of distress risk premia on the NPV of distress costs.

Our approach is based on the following insight: To the extent that financial distress costs occur

in states of nature in which bonds default, one can use corporate bond prices to estimate the

distress risk adjustment. The asset pricing literature provides substantial evidence for a systematic

component in corporate default risk. It is well known that the spread between corporate and

government bonds is too high to be explained only by expected default, reflecting in part a large risk
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premium (Elton, Gruber, Agrawal, and Mann (2001), Huang and Huang (2003), Longstaff, Mittal,

and Neis (2005), Driessen (2005), Chen, Collin-Dufresne, and Goldstein (2005), Cremers, Driessen,

Maenhout, and Weinbaum (2005), Berndt, Douglas, Duffie, Ferguson, and Schranz (2005)).5

As in standard calculations, the methodology we propose assumes the estimates of ex-post

distress costs provided by Andrade and Kaplan (1998) and Altman (1984). Unlike the standard

calculations, however, our method uses observed credit spreads to back out the market-implied

risk-adjusted (or risk-neutral) probabilities of default. Such an approach is common in the credit

risk literature (e.g., Duffie and Singleton (1999), and Lando (2004)). Our calculations also consider

tax and liquidity effects (Elton et al. (2001), Chen, Lesmond, and Wei (2004)) and use only the

fraction of the spread that is likely to be due to default risk.

Our estimates suggest that risk-adjusted probabilities of default and, consequently, the risk-

adjusted NPV of distress costs, are considerably larger than historical default probabilities and the

non-risk-adjusted NPV of distress, respectively. Consider, for instance, a firm whose bonds are

rated BBB. In our data, the historical 10-year cumulative probability of default for BBB bonds

is 5.22%. However, in our benchmark calculations the 10-year cumulative risk-adjusted default

probability implied by BBB spreads is 20.88%. This large difference between historical and risk-

adjusted probabilities translates into a substantial difference in the NPVs of distress costs. Using

the average loss in value given distress from Andrade and Kaplan (1998), our NPV formula implies

a risk-adjusted distress cost of 4.5%. For the same ex-post loss, the non-risk-adjusted NPV of

distress is only 1.4% for BBB bonds.

Our results have implications for capital structure. In particular, they suggest that marginal

risk-adjusted distress costs can be of the same magnitude as the marginal tax benefits of debt

computed by Graham (2000). For example, using our benchmark assumptions the increase in risk-

adjusted distress costs associated with a ratings change from AA to BBB is 2.7% of pre-distress

firm value.6 To compare this number with marginal tax benefits of debt, we derive the marginal

tax benefit of leverage that is implicit in Graham’s (2000) calculations and use the relationship

between leverage ratios and bond ratings recently estimated by Molina (2005). The implied gain

in tax benefits as the firm moves from an AA to a BBB rating is 2.67% of firm value. Thus, it

is not clear that the firm gains much by increasing leverage from AA to BBB levels.7 These large

estimated distress costs may help explain why many U.S. firms appear to be conservative in their

2



use of debt, as suggested by Graham (2000).

This paper proceeds as follows. We first present a simple example of how our valuation approach

works. The general methodology is presented in Section II, followed by our empirical estimates of

the NPV of distress costs in Section III, and various robustness checks in Section IV. Section V

discusses the capital structure implications of our results, and we summarize our findings in Section

VI.

I. Using Credit Spreads to Value Distress Costs: A Simple
Example

In this section, we illustrate our procedure using a simple example. The purpose of the example

is both to illustrate the intuition behind our general procedure (Section II) and to provide simple

back-of-the-envelope formulas that can be used to value financial distress costs. The formulas are

easy to implement and provide a reasonable approximation of the more precise formulas derived

later. We start with a one-period example and then present an infinite horizon example.

A. One-period Example

Suppose that we want to value distress costs for a firm that has issued an annual-coupon bond

maturing in exactly one year. The bond’s yield is equal to y, and the bond is priced at par. The

bond’s recovery rate, which is known with certainty today, is equal to ρ. Thus, if the bond defaults,

creditors recover ρ(1 + y). The bond’s valuation tree is depicted in Figure 1. The value of the

bond equals the present value of expected future cash flows, adjusted for systematic default risk.

If we let q be the risk-adjusted (or risk-neutral) one-year probability of default, we can express the

bond’s value as

1 =
(1− q)(1 + y) + qρ(1 + y)

1 + rF
, (1)

where rF is the one-year risk-free rate.

[Insert Figure 1 here]

In the valuation formula (1), the probability q incorporates the default risk premium that is

implicit in the yield spread y − rF . If investors were risk neutral, or if there were no systematic
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default risk, q would be equal to the expected probability of default which we denote by p. If

default risk is priced, then the implied q is higher than p. Equation (1) can be solved for q:

q =
y − rF

(1 + y)(1− ρ)
. (2)

The basic idea in this paper is that we can use the risk-neutral probability of default, q, to

perform a risk-adjusted valuation of financial distress costs. Consider Figure 1, which also depicts

the valuation tree for distress costs. Let the loss in value given default be equal to φ and the present

value of distress costs be equal to Φ. For simplicity, suppose that φ is known with certainty today.

If we assume that financial distress can happen at the end of one year, but never again in future

years, then we can express the present value of financial distress costs as

Φ =
qφ+ (1− q)0
1 + rF

. (3)

Formula (3) is similar to that used by Graham (2000) and Molina (2005) to value distress costs. The

key difference is that while Graham (2000) and Molina (2005) used historical default probabilities,

equation (3) uses a risk-adjusted probability of financial distress that is calculated from yield spreads

and recovery rates using equation (2).

B. Infinite Horizon Example

To provide a more precise estimate of the present value of financial distress costs, we must allow

for the possibility that if financial distress does not occur at the end of the first year, it can still

happen in future years. If we assume that the marginal risk-adjusted default probability q and

the risk-free rate rF do not change after year one,8 then the valuation tree becomes a sequence of

one-year trees that are identical to that depicted in Figure 1. This implies that if financial distress

does not happen in year one (an event that happens with probability 1− q), the present value of

future distress costs at the end of year one is again equal to Φ. Replacing 0 with Φ in the valuation

equation (3) and solving for Φ, we obtain

Φ =
q

q + rF
φ. (4)

Equation (4) provides a better approximation of the present value of financial distress costs than

does equation (3). Notice also that for a given q (that is, irrespective of the risk adjustment),

equation (3) substantially underestimates the present value of distress costs.
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The assumptions that q and rF do not vary with the time horizon are counterfactual. The

general procedure that we describe later allows for a term structure of q and rF . For illustration

purposes, however, suppose that q and rF are indeed constant. In the Appendix, we spell out the

conditions under which equation (2) can be used to obtain the (constant) risk-adjusted probability

of default q.

To illustrate the impact of the risk adjustment, take the example of BBB-rated bonds. In our

data, the historical average 10-year spread on those bonds is approximately 1.9%, and the historical

average recovery rate is equal to 0.41.9 As we discuss in the next section, the credit risk literature

suggests that this spread cannot be attributed entirely to default losses because it is also affected

by tax and liquidity considerations. Essentially, our benchmark calculations remove 0.51% from

this raw spread.10 The difference (1.39%) is what is usually referred to as the default component

of yield spreads. Using this default component, a recovery rate of 0.41, and a long-term interest

rate of 6.7% (the average 10-year Treasury rate in our data), equation (2) gives an estimate for

q equal to 2.2%. Using historical data to estimate the marginal default probability yields much

lower values. For example, the average marginal default probability over time horizons from 1 to 10

years for bonds of an initial BBB rating is equal to 0.53% (Moody’s (2002)). The large difference

between risk-neutral and historical probabilities suggests the existence of a substantial default risk

premium.

As we discuss in the introduction, the literature estimates ex-post losses in value given default

(the term φ) of 10% to 23% of pre-distress firm value. If we use, for example, the midpoint

between these estimates (φ = 16.5%), the NPV of distress for the BBB rating goes from 1.2%

(using historical probabilities) to 4.1% (using risk-adjusted probabilities). Clearly, incorporating

the risk adjustment makes a large difference to the valuation of financial distress costs. We now

turn to the more general model to see if this conclusion is robust.

II. General Valuation Formula

Figure 2 illustrates the timing of the general model that we use to value financial distress costs.

Our goal is to calculate Φ0, the NPV of distress costs at an initial date (date 0). In Figure 2, φ0,t

is the deadweight loss that the firm incurs if distress happens at time t, where t = 1, 2....
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[Insert Figure 2 here]

In all of our analysis, we assume that distress states and default states are the same. Thus, our

calculations apply to the distress costs that are incurred upon or after default. This assumption

is consistent with the results in Andrade and Kaplan (1998), who report that 26 out of the 31

distressed firms in their sample either default or restructure their debt in the year that the authors

classify as the onset of financial distress. Nonetheless, we acknowledge that our approach might not

capture some of the indirect costs of distress that are incurred before default (i.e., Titman (1984)).

To be consistent with Andrade and Kaplan (1998), who measure the value lost at the onset of

distress, we define φ0,t as the time-0 expectation of the capitalized distress costs that occur after

default at time t. After default, the firm might reorganize or it might be liquidated. If the firm

does not default at time t, it moves to period t+ 1, and so on.

We let q0,t be the risk-adjusted marginal probability of distress (default) in year t, conditional

on no default until year t− 1 and evaluated as of date 0. In contrast with Section I, we now allow

q0,t to vary with the time horizon. We also define (1−Q0,t) =
Qt
s=1(1− q0,s) as the risk-adjusted

probability of surviving beyond year t, evaluated as of date 0. Conversely, Q0,t is the cumulative

risk-adjusted probability of default before or during year t. The probability that default occurs

exactly at year t is therefore equal to (1 − Q0,t−1)q0,t. Throughout the paper, we maintain the

following assumption:

assumption 1: The deadweight loss φ0,t in case of default is constant, φ0,t = φ.

In particular, this assumption implies that there is no systematic risk associated with φ. As-

sumption 1 could lead us to underestimate the distress risk adjustment if the deadweight losses

conditional on distress are higher in bad times, as suggested by Shleifer and Vishny (1992). How-

ever, it is also possible that deadweight losses are higher in good times because financial distress

might cause the firm to lose profitable growth options (Myers, 1977).

Under assumption 1, we can write the NPV of financial distress as:

Φ0 = φ
X
t≥1

B0,t(1−Q0,t−1)q0,t , (5)

where B0,t is the time-0 price of a riskless zero-coupon bond paying one dollar at date t. Equation

(5) gives the ex-ante value of financial distress as a function of the term structure of distress
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probabilities and risk-free rates. In Section III.D, we estimate the average value of Φ0 using the

historical average term structures of B0,t and Q0,t, and in Section IV.F we discuss the impact of

time variation in the price of credit risk.

A. From Credit Spreads to Probabilities of Distress

As in Section I, we use observed corporate bond yields to estimate the risk-adjusted default

probabilities used in equation (5). Specifically, suppose that at date 0 we observe an entire term

structure of yields for the firm whose distress costs we want to value; that is, we know the sequence©
yt0
ª
t=1,2...

, where yt0 is the date-0 yield on a corporate bond of maturity t. In addition, suppose

we know the coupons
©
ct
ª
t=1,2...

associated with each bond maturity.11 For now, we assume that

the entire spread between yt0 and the reference risk-free rate is due to default losses, relegating the

discussion of tax and liquidity effects to Section III. By the definition of the yield, the date-0 value

of the bond of maturity t, V t0 , is

V t0 =
ct

(1 + yt0)
+

ct

(1 + yt0)
2
+ ...+

1 + ct

(1 + yt0)
t
. (6)

A.1. Bond Recovery

We let ρtτ be the dollar amount recovered by creditors if default occurs at date τ ≤ t for a bond

of maturity t. As Duffie and Singleton (1999) discuss, to obtain risk-neutral probabilities from the

term structure of bond yields, we need to make specific assumptions about bond recoveries. Our

benchmark valuation uses the following assumption, which was originally employed by Jarrow and

Turnbull (1995):

assumption 2: Constant recovery of Treasury (RT). In case of default, the creditors recover ρtτ =

ρP tτ , where P
t
τ is the date-τ price of a risk-free bond with the same maturity and coupons as the

defaulted bond and ρ is a constant.

The idea behind assumption 2 is that default does not change the timing of the promised

cash flows. When default occurs, the risky bond is effectively replaced by a risk-free bond whose

cash flows are a fraction ρ of the cash flows promised initially. In Section IV.B, we discuss other

assumptions commonly used in the credit risk literature and we show that our results are robust.

The assumption that ρ is constant is similar to our previous assumption that φ is constant. However,
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there is some evidence in the literature that recovery rates tend to be lower in bad times (Altman

et al. (2003), Allen and Saunders (2004), Acharya, Bharath, and Srinivasan (2005)). In Section

IV.A we verify the robustness of our results to the introduction of recovery risk.

A.2. Risk-Neutral Probabilities

Our next task is to derive the term structure of risk-neutral probabilities from observed bond

prices. We do so recursively. Under assumption 2, the price V 10 of a one-year bond must satisfy

V 10 = [(1−Q0,1) +Q0,1ρ] (1 + c1)B0,1. (7)

This equation gives Q0,1 as a function of known quantities. Given {Q0,τ}τ=1..t, we show in the

Appendix that the value of a bond with maturity t+ 1 is

V t+10 =
tX

τ=1

[(1−Q0,τ ) +Q0,τρ]ct+1B0,τ + [(1−Q0,t+1) +Q0,t+1ρ]
¡
1 + ct+1

¢
B0,t+1. (8)

This equation can be inverted to obtain Q0,t+1. Thus, we can recursively derive the sequence

of risk-adjusted probabilities {Q0,t}t=1,2... from
©
V t
ª
t=1,2...

,
©
ct
ª
t=1,2...

, {B0,t}t=1,2..., and ρ. This

procedure allows us to generalize equation (2). The risk-adjusted probabilities can then be used to

value distress costs using equation (5).

III. Empirical Estimates

We begin by describing the data used in the implementation of equations (5) and (8).

A. Data on Yield Spreads, Recovery Rates, and Default Rates

We obtain data on corporate yield spreads over Treasury bonds from Citigroup’s yield book,

which covers the period 1985 to 2004. These data are available for bonds rated A and BBB, for

maturities of 1-3, 3-7, 7-10, and 10+ years. For bonds rated BB and below, these data are available

only as an average across all maturities. Because the yield book records AAA and AA as a single

category, we rely on Huang and Huang (2003) to obtain separate spreads for the AAA and AA

ratings. Table I in Huang and Huang reports average 4-year spreads for 1985 to 1995 from Duffee

(1998) and average 10-year spreads for the period 1973 to 1993 from Lehman’s bond index. For

consistency, we calculate our own averages from the yield book over the period 1985 to 1995, but
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we note that the average spreads are similar over the periods 1985 to 1995 and 1985 to 2004.12 For

all ratings, we linearly interpolate the spreads to estimate the maturities that are not available in

the raw data. We assume constant spreads across maturities for BB and B bonds. The spread data

used in this study are reported in Table I.

[Insert Table I here]

Our benchmark valuation is based on the average historical spreads in Table I. Thus, the

resulting NPVs of distress should be seen as unconditional estimates of ex-ante distress costs for

each bond rating. We discuss the implications of time variation in yield spreads in Section IV.F.

We also obtain data on average Treasury yields and zero-coupon yields on government bonds of

different maturities from FRED and JP Morgan. Because high expected inflation in the 1980s had

a large effect on government yields, we use a broad time period (1985 to 2004) to calculate these

yields.13 Treasury data are available for maturities of 1, 2, 3, 5, 7, 10, and 20 years, and zero yields

are available for all maturities between 1 and 10 years. Again, we use a simple linear interpolation

for missing maturities between 1 and 10 years.

Finally, we obtain historical cumulative default probabilities from Moody’s (2002). These data

are available for 1-year to 17-year horizons for bonds of initial ratings ranging from AAA to B and

refer to averages over the period 1970 to 2001. These default data are similar to those used by Huang

and Huang (2003).14 While these data are not used directly for the risk-adjusted valuations, they

are useful for comparison purposes. Moody’s (2002) also contains a time series of bond recovery

rates for the period 1982 to 2001.15 In most of our calculations we assume a constant recovery rate,

which we set to its historical average of 0.413.

B. Default Component of Yield Spreads

There is an ongoing debate in the literature about the role of default risk in explaining yield

spreads such as those reported in Table I. Because Treasuries are more liquid than corporate bonds,

part of the spread should reflect a liquidity premium (see Chen, Lesmond and Wei (2004)). Also,

Treasuries have a tax advantage over corporate bonds because they are not subject to state and

local taxes (Elton et al. (2001)). These arguments suggest that we cannot attribute the entire

spreads reported in Table I to default risk.
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Researchers have attempted to estimate the default component of corporate bond spreads using

a number of different strategies. Huang and Huang (2003) use a calibration approach and find

that the default component predicted by many structural models is relatively small.16 In contrast,

Longstaff, Mittal and Neis (2005) argue that credit default swap (CDS) premia are a good approx-

imation of the default components, and suggest that the default component of spreads is much

larger than that suggested by Huang and Huang. Chen, Collin-Dufresne and Goldstein (2005) use

structural credit risk models with a counter cyclical default boundary and show that such models

can explain the entire spread between BBB and AAA bonds when calibrated to match the equity

risk premium. Cremers et al. (2005) add jump risk to a structural credit risk model that is cali-

brated using option data and generate credit spreads that are much closer to CDS premiums than

those generated by the models in Huang and Huang. We summarize these recent findings in Table

II. With the exception of Huang and Huang, the findings in these papers appear to be reasonably

consistent with each other.

Unfortunately, these papers report default components only for a subset of ratings and maturities.17

Thus, to implement formulas (5) and (8), we must first estimate the default component across all

ratings and maturities. We now present two ways to do so.

B.1. Method 1: Using the 1-year AAA Spread

Following Chen, Collin-Dufresne and Goldstein (2005), we assume that the component of the

spread that is not given by default can be inferred from the spreads between AAA bonds and

Treasuries. Chen et al. use a 4-year maturity in their calculations, but our data on historical

default probabilities suggest that, while there has never been any default for AAA bonds up to a

3-year horizon, there is a small probability of default at a 4-year horizon (0.04%). Thus, it seems

appropriate to use a shorter spread to adjust for taxes and liquidity.18 The 1-year spread in Table

I is 0.51%. We therefore calculate the default components for rating i and maturity t as

(Default component)ti = (spread)
t
i − 0.51%. (9)

Notice that formula (9) allows us to construct spread default components for all ratings and ma-

turities. Table II reports some of the fractions implied by this procedure for select maturities.

By construction, the 4-year BBB fraction is virtually identical to that estimated by Chen et al.
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Most of the other fractions are very close to those estimated by Longstaff, Mittal and Neis (2005)

and Cremers et al. (2005), suggesting that method 1 produces default components that closely

approximate CDS premia. The only real discrepancy is with respect to Huang and Huang (2003),

who estimate lower fractions for investment-grade bonds.

[Insert Table II here]

B.2. Method 2:Using Spreads Over Swaps

As we discuss above, Longstaff, Mittal and Neis (2005) argue that CDS premia are a good

approximation for the default component of yield spreads. In addition, Blanco, Brennan and Marsh

(2005) show that the spread over swaps tracks CDS premia very closely. These results suggest that

one can use spreads over swaps to estimate the default component. Unfortunately, data on swap

rates start only in 2000. Hence, we cannot use Huang and Huang’s spread data (which refers to

1985 to 1995) and consequently we can only provide fraction estimates for A-, BBB-, BB-, and

B-rated bonds. Using swap data for 2000 to 2004, we calculate the average default component for

rating i and maturity t as

(Fraction due to default)ti =
(spread)ti − (swapt − treasuryt)

(spread)ti
. (10)

Table II shows that this alternative approach gives fractions due to default that are very close to

those obtained using the AAA spread of method 1.19 Given these results, it seems safe to choose

method 1 as our benchmark approach to calculate default components. An important advantage

of method 1 is that it allows us to present valuations for all bond ratings, from AAA to B.

C. Risk-Neutral Probabilities and Excess Returns

Starting from the spreads reported in Table I, we use equation (9) to estimate the default

components. We then use the default components to derive a term structure of risk-adjusted

default probabilities. Each bond yield yt0 is computed as the sum of the default component and

the corresponding Treasury rate. We must make an assumption about coupon rates in order to use

equation (6). Our baseline calculations assume that corporate bonds trade at par, so that ct = yt0
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and V t0 = 1 for all t. We then use equation (8) to generate a sequence of cumulative probabilities

of default {Q0,t}t=1,2..10.

Table III reports the risk-adjusted cumulative default probabilities for select maturities. For

comparison purposes, we also report the historical cumulative probabilities of default from Moody’s

(2002). The risk-adjusted market-implied probabilities are larger than the historical ones for all

ratings and maturities and are substantially so for investment-grade bonds. For instance, the 5-year

historical default probability of BBB bonds is 1.95%, while the risk-neutral one is 11.39%. The

ratio between risk-neutral and historical probabilities (averaged over maturities) ranges from 3.57

for AAA-rated bonds to 1.21 for B-rated bonds. These ratios indicate the presence of a large credit

risk premium. Interestingly, the ratios are highest for investment-grade bonds, especially for the

AA, A, and BBB ratings. Cremers et al. (2005) suggest one possible interpretation of this pattern:

If the default risk premium is associated with a jump risk premium, it is perhaps not surprising

that the risk premium is lower for bonds that are quite likely to default (i.e., BB and B ratings).

[Insert Table III here]

The evidence on holding period excess returns of corporate bonds is also consistent with the

existence of the risk premium that we emphasize. Keim and Stambaugh (1986), for example, find

that excess returns of BBB bonds over long-term government bonds are on average eight basis

points a month in the period of 1928 to 1978. This excess return is equivalent to approximately

1% per year. Fama and French (1989, 1993) report similar summary statistics for average excess

returns.20 These numbers are largely consistent with the risk-neutral and historical probabilities

in Table III. Consider, for example, the excess return on a zero-coupon security that promises one

dollar in five years, and defaults like a BBB bond. The risk-adjusted and historical probabilities in

Table III imply an annual expected excess return of 1.24% for this security,21 which is close to the

average historical excess returns that the literature reports..

D. Valuation

We can now use the term structure of risk-neutral probabilities computed in Section III.C in

the valuation equation (5). Because we only have cumulative default probabilities up to year 10,
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we compute a terminal value of financial distress costs at year 10 (details in the Appendix). The

terminal value is computed by assuming constant marginal risk-adjusted default probabilities and

yearly risk-free rates after year 10. Thus, the formula is very similar to that derived in the infinite

horizon example of Section I. As in Section I, we use φ = 16.5% in our benchmark calculations.

Graham (2000) and Molina (2005) use numbers in this range to compare tax benefits of debt and

costs of financial distress.

[Insert Table IV here]

The second column of Table IV presents our estimates of the risk-adjusted cost of financial

distress for different bond ratings. For comparison, we report in the first column the same valuations

using the historical default rates.22 We find that risk is a first-order issue in the valuation of distress

costs, which confirms the results of Section I. For instance, distress costs for the BBB rating increase

from 1.40% to 4.53% once we adjust for risk. To provide some evidence on the marginal increase

in distress costs as the firm moves across ratings, we also report the difference in distress costs

between the BBB and the AA ratings. An increase in leverage that moves a firm from AA to BBB

increases the cost of distress by 2.7%. In contrast, the increase is only 1.11% if we use historical

probabilities. Thus, risk adjustment also matters for marginal distress costs.

IV. Robustness Checks

The estimates in Table IV rely on a set of assumptions about bond recoveries, coupon rates, and

deadweight losses given distress. We now check how sensitive our results are to these assumptions.

A. Recovery Risk

Following assumption 2, the benchmark valuation in the second column of Table IV uses ρ =

0.413 in equation (8). The use of an average historical recovery is common in the credit risk

literature. Huang and Huang (2003), Chen, Collin-Dufresne and Goldstein (2005), and Cremers et

al. (2005), for example, use average historical recoveries of 0.51 in their calibrations. However, there

is some evidence in the literature of a systematic component of recovery risk (Altman et al. (2003),

and Allen and Saunders (2004)). As Berndt et al. (2005) and Pan and Singleton (2005) discuss, a
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standard way to incorporate recovery risk into credit risk models is to use a constant risk-neutral

(as opposed to average historical) recovery rate. Berndt et al. (2005) use a risk-neutral recovery

rate of 0.25, which is the lowest cross-sectional sample mean of recovery reported by Altman et

al (2003). According to Pan and Singleton (2005), this is a common industry standard for the

risk-neutral recovery rate.23

We note that the lower the recovery rate plugged into equation (8), the lower the implied risk-

neutral probabilities. Low recoveries increase a creditor’s loss given default, and thus for a given

spread the implied probability of default is higher (see, for example, equation (2)). The third

column of Table IV reports the results of decreasing the recovery rate to 0.25 without changing the

estimate for φ. As expected, the risk-adjusted costs of financial distress decrease.24 For example,

the point estimate for the BBB rating goes from 4.53% to 3.70% if bond recovery goes from 0.41 to

0.25. Nonetheless, the risk adjustment is still large, and assuming a lower recovery does not affect

the estimated marginal costs of distress much. For example, if bond recovery is 0.25, the increase

in distress costs for a firm moving from AA to BBB is 2.2%, which is only slightly lower than the

corresponding margin when recovery is 0.41 (2.7%). We conclude that our results are robust to the

introduction of recovery risk.

B. Recovery of Face Value

Equation (8) is derived under the assumption that recovery is a fraction of a similar risk-free

bond (assumption 2, or RT assumption). Another commonly used assumption is that recovery

is a fraction of the face value of the bond, with zero recovery of coupons (assumption RFV). In

the Appendix, we show how to derive the term structure of risk-neutral probabilities from the

default component of the spreads under assumption RFV. The fourth column of Table IV shows

the valuation results with this alternative assumption. The implied risk-neutral probabilities of

default are lower, and thus the valuation results are slightly lower than those obtained under RT.

However, it is clear from the fourth column that the two assumptions generate very similar costs of

financial distress. The AA minus BBB margin, for example, goes from 2.69% (under RT) to 2.47%

(RFV). We conclude that the valuation is robust to alternative recovery assumptions.

C. Coupon Rates
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The risk-neutral probabilities in Table III are derived under the assumption that the bond

coupons are equal to the adjusted bond yields (the default component of the yield plus the corre-

sponding Treasury rate). To verify the robustness of our results, Table IV contains the valuations

assuming that coupons are equal to 0.5 times the adjusted yields (in the fifth column) or 1.5 times

the adjusted yields (in the sixth column). Risk-adjusted probabilities, and thus risk-adjusted dis-

tress costs, are higher with higher coupons. However, it is clear from Table IV that the results are

relatively robust to variations in coupon rates. The BBB minus AA margin, for example, goes from

2.64% (when coupons are 0.5 times the yield) to 2.77% (when coupons are 1.5 times the yield).

Thus, changes in assumed coupon rates have small effects on the marginal costs of financial distress.

D. Using Huang and Huang’s (2003) Fractions

As we discuss in Section III.B, Huang and Huang (2003) estimate smaller default components

of spreads than those we use to construct Tables III. Not surprisingly, using Huang and Huang’s

fractions leads to lower costs of financial distress, as shown in the seventh column of Table IV. The

difference is more pronounced for ratings between AAA and BBB. The BBB minus AA margin, for

example, decreases to 1.65%. This margin is close to that calculated using historical probabilities.

These results highlight the importance of more recent papers, such as those by Longstaff, Mittal

and Neis (2005), Chen, Collin-Dufresne and Goldstein (2005), and Cremers et al. (2005), which

suggest that credit risk can explain a larger fraction of spreads.

E. Changes in φ

Panel A of Table IV assumes that φ=16.5%, which is the midpoint of the 10% to 23% range

reported in Andrade and Kaplan (1998). In Panel B of Table IV we report valuation results for the

endpoints of this range.25 Not surprisingly, direct changes in φ have a large impact on valuations,

both for historical and risk-adjusted probabilities. For example, the risk-adjusted BBB valuation

increases from 1.95% (if φ = 10%) to 6.32% (if φ = 23%). Because the impact of changes in φ

is higher if default probabilities are high, the effect on the margins is also large, especially when

compared with the other assumptions in Table IV. The AA-BBB margin increases from 1.63% to

3.75% as φ goes from 10% to 23%. Thus, it is important to consider a range of values for φ in the

capital structure exercises in the next section. On the other hand, the difference between historical
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and risk-adjusted valuations remains substantial, irrespective of φ. For example, if φ = 10%, the

increase in the BBB valuation that can be attributed to the risk adjustment is still equal to 1.90%.

Thus, ignoring the risk adjustment substantially undervalues the costs of distress for all φ values

in this range.

F. Time Variation in Spreads26

Thus far we conduct our analysis using average historical spreads to calculate risk-adjusted

probabilities. Conceptually, we have answered the following question: What are the costs of finan-

cial distress for an average firm about to be created, assuming that aggregate business conditions

are and will remain at historical averages?

In reality, however, the market price of credit risk (as captured by credit spreads) varies over

time (see Berndt et al. (2005), and Pan and Singleton (2005)). This insight has two important

implications for our paper. First, we may be underestimating the size of the risk adjustment

because a risk-adjusted ex-ante valuation should put more probability weight on episodes of high

spreads than on those of low spreads. Second, the (conditional) NPV of financial distress costs

should change over time as credit spreads vary, which may change the optimal leverage.

To understand these points more clearly, consider Figure 3. Figure 3 depicts a simple example

that we use to gain some intuition; it is not a full-fledged model. Suppose that there are two periods

and three dates. We assume that the firm makes its leverage decision at time 0. We must then

compute the NPV of distress costs at that date. At time 1, an aggregate shock is realized, which

affects the market price of risk and the future risk-neutral default rates: Agents learn that q is

either high, qh, or low, ql. At time 2, financial distress occurs with probability q = qh or ql.

[Insert Figure 3 here]

The first point we discuss is the bias from using the historical average instead of the correct

risk-neutral average. Let xQ be the risk-neutral probability that q jumps to qh at time 1. The

correct ex-ante NPV of financial distress would then be

ΦQ =
xQqH +

¡
1− xQ

¢
qL

(1 + rF )2
φ. (11)
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However, the risk-adjusted valuation that we perform in Section II used historical average spreads

to compute risk-adjusted probabilities of distress. In the example in Figure 3, the naive NPV of

distress using that methodology would be

ΦP =
xP qH +

¡
1− xP

¢
qL

(1 + rF )2
φ, (12)

where xP is the true (historical) probability that q jumps to qh at time 1. In reality, investors are

likely to assign a risk premium to the uncertainty about spreads.27 In other words, it is likely that

xQ > xP . In this case, equations (11) and (12) show that our previous calculations underestimate

the true average NPV of financial distress.

The second point that Figure 3 helps clarify is that distress costs depend on the state realized

at time 1. If the firm could adjust its capital structure at time 1, it would make different choices

in the high and low states because the NPV of distress costs is larger in the high state.

Developing a full-fledged model of the time variation in q is beyond the scope of this paper.

However, we feel that it might be useful to have some sense of the potential impact of time variation

in spreads on conditional distress costs. We therefore present some back-of-the-envelope calcula-

tions. As we describe in Section III.A, we have monthly time-series data from 1985 to 2004 for

all ratings between A and B. We use these data to compute the standard deviation in spreads

separately for each rating and maturity, as a fraction of average 1985 to 2004 spreads for that

rating-maturity. These ratios range from 50% to 80% for A bonds (depending on maturity) and

from 36% to 70% for BBB bonds, and are equal to 38% for BB bonds and 33% for B bonds. We

then scale our benchmark average spreads, which are calculated using 1985 to 1995 data, uniformly

up and down using these ratios. Using these scaled spreads, we repeat the valuation exercises

performed in Sections III.C and III.D.28 We emphasize that these calculations are only meant to

be an illustration. In particular, these valuations assume that the spreads remain at the low and

high levels indefinitely.

With these caveats in mind, we find that the NPV of financial distress costs varies substantially

between the high and low scenarios. For example, for BB bonds the NPV of distress goes from

4.73% (low spreads) to 8.38% (high spreads). The impact of time variation on margins, however,

is less clear. For example, the difference in distress costs between A and BBB bonds is highest

when spreads are low; it is equal to 0.89% if spreads are low and 0.53% when spreads are high. On
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the other hand, the difference between A and BB bonds shows the opposite pattern; it is equal to

1.78% when spreads are low and 3.73% when spreads are high. While these results are suggestive

of the potential effect of time variation in spreads, more research is required to establish their exact

impact on marginal distress costs and capital structure choices.

V. Implications for Capital Structure

The existing literature suggests that distress costs are too small to overcome the tax benefits

of increased leverage, and thus that corporations may be using debt too conservatively (Graham,

2000). This quote from Andrade and Kaplan (1998) well captures the consensus view:

“[..] from an ex-ante perspective that trades off expected costs of financial distress

against the tax and incentive benefits of debt, the costs of financial distress seem low [..].

If the costs are 10 percent, then the expected costs of distress [..] are modest because

the probability of financial distress is very small for most public companies.” (Andrade

and Kaplan, 1488-1489).

In other words, using estimates for φ that are in the same range as those used in Table IV

should produce relatively small NPVs of distress costs because the probability of financial distress

is too low. In this section, we attempt to verify whether this conclusion continues to hold if we

compare marginal risk-adjusted costs of financial distress to marginal tax benefits of debt.

Naturally, the calculations that we perform in this section are subject to the limitations of the

static trade-off model of capital structure. Our point is not to argue that this model is the correct

one or to provide a full characterization of firms’ optimal financial policies. We simply want to

verify whether the magnitude of the distress costs that we calculate is comparable to that of the

tax benefits of debt. To compare the distress costs displayed in Table IV with the tax benefits of

debt, we need to estimate the tax benefits that the average firm can expect at each bond rating. To

do this, we closely follow the analysis in Graham (2000), who estimates the marginal tax benefits

of debt, and Molina (2005), who relates leverage ratios to bond ratings.

A. The Marginal Tax Benefit of Debt
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Graham (2000) estimates the marginal tax benefit of debt as a function of the amount of interest

deducted and calculates total tax benefits of debt by integrating under this function. The marginal

tax benefit is constant up to a certain amount of leverage, and then it starts declining because firms

do not pay taxes in all states of nature and because higher leverage decreases additional marginal

benefits (as there is less income to shield). Essentially, we can think of the tax benefits of debt in

Graham (2000) as being equal to τ∗D (where τ∗ takes into account both personal and corporate

taxes) for leverage ratios that are low enough such that the firm has not reached the point at which

marginal benefits start decreasing (see footnote 13 in Graham’s paper). Graham calls this point

the kink in the firm’s tax benefit function. For example, a firm with a kink of two can double its

interest deductions and still keep a constant marginal benefit of debt.

In Graham’s sample, the average firm in COMPUSTAT (over the 1980-1994 time period) has a

kink of 2.356 and a leverage ratio of approximately 0.34. He estimates that the average firm could

have gained 7.3% of their market value if it had levered up to its kink. Because the firm remains

in the flat portion of the marginal benefit curve until its kink reaches one, these numbers allow us

to compute the implied marginal benefit of debt in the flat portion of the curve (τ∗). If we assume

that the typical firm needs to increase leverage 2.356 times to move to a kink equal to one, we can

back out the value of τ∗ as 0.157. The tax benefits of debt can then be calculated as 0.157 times the

leverage ratio, assuming leverage is low enough that we remain in the flat portion. To the extent

that the approximation is not true for high leverage ratios, we are probably overestimating the tax

benefits of debt for these leverage values.29

B. The Relation Between Leverage and Bond Ratings

To compute the tax benefits of debt at each bond rating, we need to assign a typical leverage

ratio to each bond rating. As Molina (2005) discusses, the endogeneity of the leverage decision

affects the relationship between leverage and ratings. In particular, because less risky and more

profitable firms can have higher leverage without greatly increasing the probability of financial

distress, the impact of leverage on bond ratings might appear to be too small.

[Insert Table V here]

The leverage data used in this exercise are reported in Table V. The first column reports
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Molina’s predicted leverage values for each bond rating from his Table VI (Molina (2005), p. 1445).

According to Molina, these values give an estimate of the impact of leverage on ratings for the

average firm in Graham’s sample. To verify the robustness of our results, we also use the simple

descriptive statistics in Molina’s (2005) Table IV (Molina (2005), p. 1442). Molina’s data, which

corresponds to the ratio of long-term debt to book assets for each rating in the period 1998 to 2002,

are reported in the second column of Table V. As Molina discusses, despite the aforementioned

endogeneity problem, the rating changes in these summary statistics actually resemble those pre-

dicted by the model. In addition, we report in the third column of Table V the relation between

leverage and ratings that is used by Huang and Huang (2003). These leverage data come from

Standard and Poor’s (1999) and are used by several authors to calibrate credit risk models (i.e.,

Cremers et al., 2005).

C. Tax Benefits versus Distress Costs

Table VI depicts our estimates of the tax benefits of debt for each bond rating. If we use the

leverage ratios from Molina’s (2005) regression model (Panel A), the increase in tax benefits as the

firm moves from the AA rating to the BBB rating is 2.67%. Under the benchmark valuation of

distress costs (see Table IV), this marginal gain is of similar magnitude as the marginal risk-adjusted

distress costs (2.69% according to Table IV). Analysis of Table IV also shows that the similarity

between the marginal tax benefits of debt and marginal financial distress costs holds irrespective of

our specific assumptions about coupons and recoveries as long as we use the benchmark assumption

of φ = 16.5%.

[Insert Table VI here]

To further compare marginal tax benefits and distress costs, Table VI also reports the difference

between the present value of tax benefits and the cost of distress for each bond rating. Under the

static trade-off model of capital structure, the firm is assumed to maximize this difference. Because

the specific assumption about φ substantially affects marginal distress costs (see Panel B of Table

IV), we report results obtained for φ = 10% and φ = 23%, as well as for the benchmark case of

φ = 16.5%.
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Table VI illustrates our conclusion that the distress risk adjustment substantially reduces the

net gains that the average firm can expect from levering up. For example, if φ = 16.5% and we

ignore the risk adjustment (second column), the firm can increase value by 3% to 4% if it levers up

from zero to somewhere around a BBB bond rating. However, once we incorporate the distress risk

adjustment, the net gain from levering up never goes above 1%. The gains from levering up are

higher if φ becomes closer to 10%, as shown in the third and fourth columns. However, the distress

risk adjustment substantially reduces the gains from levering up, even for these lower values of φ.

For values of φ closer to 23% (fifth and sixth columns), the marginal distress costs are uniformly

higher than the marginal tax benefits.

The second, and related, conclusion is that the distress risk adjustment generally moves the

optimal bond rating generated by these simple calculations towards higher ratings. For example,

if φ = 16.5% and we ignore the risk adjustment, a firm should increase leverage until it reaches

a rating of A to BBB, because this rating is associated with the largest differences between tax

benefits and distress costs. However, after incorporating the distress risk adjustment, the difference

becomes essentially flat or decreasing for all ratings lower than AA. Naturally, the result is even

stronger for higher values of φ.

Both conclusions are driven by the finding that marginal risk-adjusted distress costs are very

close to the marginal tax benefits of debt. Figure 4 gives a visual picture of these results. In

Figure 4 we plot the difference between tax benefits and distress costs for the benchmark case

(φ = 16.5%), both for non-risk-adjusted and risk-adjusted distress costs. Clearly, the marginal gains

from increasing leverage are very flat for any rating above AA if distress costs are risk adjusted.

The visual difference with the inverted U-shape generated by the non-risk-adjusted valuation is

very clear.

[Insert Figure 4 here]

In Panel B of Table VI, we vary the relationship between leverage and ratings for the benchmark

case of φ = 16.5%. The net gains from levering up are even lower than those in Panel A if we use

Molina’s summary statistics to compute the marginal tax benefits of debt (first column). However,

if we use historical probabilities to value financial distress costs, the firm can still gain around 3%
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in value by moving from zero leverage to a BBB rating (second column). These gains disappear

once distress costs are risk adjusted (third column). Marginal tax benefits are higher if we use the

leverage ratios from Huang and Huang (fourth column), resulting in large net gains from leverage

if distress costs are not risk adjusted (fifth column). However, the sixth column shows that the

difference between tax benefits and risk-adjusted distress costs is relatively flat, even for these

leverage ratios. This difference increases from 1.73% (AAA rating) to a maximum of 2.26% for

the BBB rating. We conclude that the results are robust to variations in the ratings-leverage

relationship.

D. Interpretation and Comparison with Previous Literature

Table VI and Figure 4 show that risk-adjusted costs of financial distress can counteract the

marginal tax benefits of debt estimated by Graham (2000). These results suggest that financial

distress costs can help explain why firms use debt conservatively, as suggested by Graham. We

note, however, that Graham’s evidence for debt conservatism is not based solely on the observation

that the average firm appears to use too little debt. His data also show that firms that appear to

have low costs of financial distress have lower leverage (higher kinks). Our results do not address

this cross-sectional aspect of debt conservatism.

Molina (2005) argues that the greater impact of leverage on bond ratings and probabilities of

distress that he finds after correcting for the endogeneity of the leverage decision can also help

explain why firms use debt conservatively. However, Molina does not perform a full-fledged val-

uation of financial distress costs, as we have done in this paper. His calculations are based on

the same approximation of marginal costs of financial distress used by Graham (2000), which is to

use Φ = pφ, where p is the 10-year cumulative historical default rate. As we discuss in Section I,

this formula underestimates the NPV of financial distress costs, irrespective of the risk adjustment

issue.30 Thus, we believe the results in Table VI and Figure 4 provide a more precise comparison

between the NPV of distress costs and the capitalized tax benefits of debt.

VI. Final Remarks

In this paper, we develop a method to estimate the present value of the costs of financial distress

that takes into account the systematic component in the risk of distress. Our formulas are easy to
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implement (particularly those in Section I) and should be useful for research and teaching purposes.

We find that the traditional practice of using historical default rates severely underestimates the

average value of distress costs, as well as the effects of changes in leverage on marginal distress

costs. The marginal distress costs that we find can help explain the apparent reluctance of firms

to increase their leverage, despite the existence of substantial tax benefits of debt.

One caveat is that we risk-adjust distress costs using historical average bond spreads. There

is evidence, however, of significant variation in credit risk premia over time (Berndt et al. (2005),

Pan and Singleton (2005)). Time variation in distress costs could lead firms to optimally reduce

their leverage in times when credit spreads are high, as emphasized in the market timing literature.

The large risk adjustments found herein are derived from the significant risk premia that in-

vestors appear to require if they are to hold corporate bonds. These large risk premia might justify

the reluctance of firms to lever up if their goal is to maximize the wealth of risk-averse investors.

Thus, our results suggest that bond spreads and capital structure decisions are mutually consis-

tent. Considering simultaneously the option market and the bond market, Cremers et al. (2005)

show that the implied volatilities and jump risks implicit in option prices can explain credit spreads

across firms and over time. In other words, they find that corporate bond spreads and option prices

are also mutually consistent. Taken together, these results suggest that market participants, from

options and bonds traders to corporate managers, seem to respond similarly to the market price of

risk.
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Appendix. Proofs

Proof of equation (2) in the perpetuity example of Section I: Suppose that the promised return on a perpetual
bond is constant over time and that given default creditors recover a fraction of the bond’s market value just prior
to default, including the coupons that are due in the year that default occurs. This “recovery of market value”
assumption comes from Duffie and Singleton (1999). In addition, we maintain the assumptions that the recovery rate
is non stochastic and that the risk-free rate is constant (equal to rF ).

Let the bond’s promised yearly return be equal to y. Without loss of generality, assume that the bond is priced
at par such that the yearly coupon is also equal to y. Next year, if the bond does not default creditors receive a
coupon equal to y. The value of the remaining promised payments is constant over time and equal to one. Thus,
creditors receive (1 + y) if there is no default. The recovery of market value assumption implies that creditors will
receive ρ(1 + y) if there is default in year one. Thus, the bond valuation tree is identical to that presented in Figure
1, and the bond’s date-0 value can be expressed by equation (1). Formula (2) then follows. Q.E.D.

Proof of equation (8): To understand the recursive formula, consider a two-year bond. If the bond defaults in
year 1, we have:

EQ
£
ρ21
¤
= ρ

£
c2 + (1 + c2)B1,2

¤
, (A1)

where B1,2 is the date-1 price of a zero-coupon bond that pays one at date 2, and EQ [.] are expectations under the
risk-neutral measure. If the bond defaults in year 2, we have EQ

£
ρ22
¤
= ρ(1 + c2). We can then write the valuation

equation for a two-period bond as

V 2
0 = (1−Q0,1)c2B0,1 +Q0,1ρ

£
c2 + (1 + c2)B1,2

¤
B0,1 + (A2)

+[(1−Q0,1)(1− q0,2) + (1−Q0,1)q0,2ρ] (1 + c2)B0,2 .

Using the facts that B0,2 = B1,2B0,1, (1−Q0,1)(1−q0,2) = (1−Q0,2) and Q0,1+ (1−Q0,1)q0,2 = Q0,2, we can rewrite
equation (A2) as

V 2
0 = [(1−Q0,1) +Q0,1ρ]c2B0,1 + [(1−Q0,2) +Q0,2ρ]

¡
1 + c2

¢
B0,2 . (A3)

Given Q0,1, we can solve equation (A3) for Q0,2. Similar reasoning leads to equation (8). Q.E.D.

Terminal value calculation (Section III.D): We assume that the marginal risk-adjusted probability of default is
constant after year 10, that is

q0,t = q0,10 = 1−
(1−Q0,10)
(1−Q0,9)

, for t > 10. (A4)

Similarly, we assume that the yearly zero-coupon rate is constant after year 10, that is, the yearly risk-free rate after
year 10 is given by

rF0,10 =
B0,9
B0,10

− 1. (A5)

Given these assumptions, we can compute a terminal cost of financial distress at year 10. We can expand equation
(5) as

Φ0 = φ

"
10X
t=1

B0,t(1−Q0,t−1)q0,t + (1−Q0,10)q0,11B0,11 + (1−Q0,11)q0,12B0,12 + ...
#
. (A6)

Using the assumptions that q0,t = q0,10 and rF0,t = r
F
0,10 for t > 10, we can write

Φ0 = φ

"
10X
t=1

B0,t(1−Q0,t−1)q0,t +
B0,10(1−Q0,10)q0,10

q0,10 + rF0,10

#
. (A7)

Different Recovery Assumptions (Section IV.B): In addition to assumption 2, the credit risk literature uses the
following assumptions about bond recoveries:
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(i) Recovery of face value (RFV): E(ρtτ ) = E(ρ). This assumption is used by Brennan and Schwartz (1980) and
Duffee (1998). In words, if default occurs at time τ < t, creditors receive a fraction of face value immediately upon
default. There is zero recovery of coupons.

(ii) Recovery of market value (RMV): E(ρtτ ) = E(ρV
t
τ ), where V

t
τ is the market value prior to default at date τ

of the corporate bond, contingent on survival up to date τ . This assumption comes from Duffie and Singleton (1999).
Duffie and Singleton (1999) compare risk-neutral probabilities that are generated by assumptions RMV and RFV,

and find that the two alternative assumptions generate very similar results unless corporate bonds trade at significant
premia or discounts or if the term structure of interest rates is steeply increasing or decreasing. For simplicity, we
focus only on assumption RFV for the robustness checks. Under assumption RFV, E(ρtτ ) = ρ for all τ , t, and the
valuation formula becomes

V t+1
0 = ct+1

tX
τ=1

(1−Q0,τ )B0,τ + ρ
t+1X
τ=1

(1−Q0,τ−1)q0,τB0,τ +
¡
1 + ct+1

¢
(1−Q0,t+1)B0,t+1. (A8)

Again, this formula can be easily inverted to obtain Q0,t+1 if one has the sequence {Q0,τ}τ=1..t and the yield on a
coupon-paying bond with maturity t+ 1. Notice that Q0,0 = 1 and that q0,t+1 = 1− (1−Q0,t+1)

(1−Q0,t) .
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Endnotes

1. Warner (1977) and Weiss (1990), for example, estimate costs on the order of 3% to 5% of
firm value at the time of distress.

2. Altman (1984) reports similar cost estimates of 11% to 17% of firm value three years prior
to bankruptcy. However, Andrade and Kaplan (1998) argue that part of these costs might not be
genuine financial distress costs, but rather consequences of the economic shocks that drove firms
into distress. An additional difficulty in estimating ex-post distress costs is that firms are more
likely to have high leverage and to become distressed if distress costs are expected to be low. Thus,
any sample of ex-post distressed firms is likely to have low ex-ante distress costs.

3. Structural models in the tradition of Leland (1994) and Leland and Toft (1996) are typically
written directly under the risk-neutral measure. Others (e.g., Titman and Tsyplakov (2004), and
Hennessy and Whited (2005)) assume risk neutrality and discount the costs of financial distress by
the risk-free rate. In either case, these models do not emphasize the difference between objective
and risk-adjusted probabilities of distress.

4. More precisely, we mean to say that distress tends to occur in states in which the pricing
kernel is high. As we discuss in the next paragraph and elsewhere in the paper, there is substantial
evidence that default risk has a systematic component.

5. See also Pan and Singleton (2005) for related evidence on sovereign bonds.
6. For comparison purposes, the increase in marginal non-risk-adjusted distress costs is only

1.11%.
7. This conclusion generally holds for variations in the assumptions used in the benchmark

valuations. The results are most sensitive to the estimate of losses given distress, as we show in
Section IV.

8. In a multiperiod model, the probability q0,t should be interpreted as the marginal risk-
adjusted default probability in year t, conditional on survival up to year t − 1 and evaluated at
date 0. In this simple example we assume that q0,t = q for all t.

9. See Section III.A for a detailed description of the data.
10. This adjustment factor is the historical spread over Treasuries on a one-year AAA bond. In

Section III.B we discuss alternative ways to adjust for taxes and liquidity, and we argue that most
(but not all) of them imply similar default component of spreads.

11. For simplicity, we use a discrete model in which all payments (coupons, face value, and
recoveries) that refer to year t happen exactly at the end of year t.

12. For example, the average 10+ year spread for BBB bonds in the yield book data is 1.90%
for both time periods. Average B-bond spreads are 5.45% if we use 1985 to 1995 and 5.63% if we
use 1985 to 2004. In addition, the yield book data and the Huang and Huang data are similar for
comparable ratings and maturities. For example, the 10-year spread for BBB bonds is 1.94% in
Huang and Huang.

13. Some average Treasury yields that we use are 5.74% (1-year), 6.32% (5-year), and 6.73%
(10-year).

14. The default probabilities are calculated using a cohort method. For example, the 5-year
default rate for AA bonds in year t is calculated using a cohort of bonds that were initially rated
AA in year t− 5.

15. More specifically, these data refer to cross-sectional average recoveries for original issue
speculative-grade bonds.

16. In particular, Huang and Huang’s results imply that the distress probabilities in Leland
(1994) and Leland and Toft (1996) incorporate a relatively low risk adjustment.

17. Chen et al. consider only BBB bonds in their analysis, while Longstaff et al. do not provide
estimates for AAA and B bonds. In addition, Huang and Huang (2003) provide estimates for 4-
and 10-year maturities only, while Longstaff et al. and Chen et al. consider only one maturity
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(5-year and 4-year, respectively). Cremers et al. (2005) report 10-year credit spreads for ratings
between AAA and BBB.

18. In any case, the difference between 1-year and 4-year AAA spreads (0.04%) is negligible, so
using the 4-year spread would produce virtually identical results.

19. In fact, AAA spreads are very close to the difference between swap and Treasury rates (see
Feldhutter and Lando (2005) for some additional evidence on this point). Thus, it is not surprising
that both methods provide similar results.

20. More recently, Saita (2006) also finds high holding period returns and Sharpe ratios for
portfolios of corporate bonds.

21. To compute this number, we use the same assumptions about recoveries and risk-free rates
that we use to compute the probabilities in Table III.

22. Notice that equation (5) only requires default probabilities and risk-free rates to translate φ
estimates into NPV estimates. We assume that the historical marginal default probability is fixed
after year 10 for each rating to compute a terminal value, and we estimate the long-term marginal
default probability as the average marginal probability between years 10 and 17.

23. Pan and Singleton (2005) use the term structure of sovereign CDS spreads to separately
estimate risk-neutral recoveries and default intensities, and they estimate recovery rates that are
larger than the commonly used value of 0.25.

24. Recall, however, that we are also assuming a constant φ. If the reason for a low value of ρ
in bad times is precisely a high value of φ, then it is less clear that using historical values for ρ and
φ leads us to overestimate distress costs.

25. Notice that unlike the robustness checks above, which only affect risk-adjusted probabilities,
these variations also impact the valuation using historical probabilities.

26. We thank our referee for suggesting this discussion to us.
27. See Pan and Singleton (2005) for evidence on the risk premium associated with time

variation in default probabilities for sovereign bonds.
28. In these exercises, we keep all parameters fixed at their benchmark values, including recovery

rates (0.41), losses given distress (0.165), and risk-free rates.
29. These tax benefit calculations also ignore risk adjustments. We derive a risk adjustment

in a previous version of the paper assuming perpetual debt. If D is taken to be the market value
of debt, the risk adjustment does not have a substantial effect on Graham’s formula because it is
already incorporated in D. In fact, with zero recovery rates the interest tax shields are exactly
a fraction τ of the cash flows to bondholders in all states, and thus by arbitrage the value of tax
benefits must be exactly equal to τD. With nonzero recovery, there is a risk adjustment that
reduces tax benefits, but it is quantitatively small.

30. In addition, there are two differences between our calculations and those performed by
Molina. First, his marginal tax benefits of debt are smaller than those we use because he uses more
recent data from Graham that implies a τ∗ of around 13%. Second, when comparing marginal tax
benefits with marginal costs of distress (Table VII), he uses the minimum change in leverage that
induces a rating downgrade. In contrast, we use average leverage values for each rating in Table
VII.
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Table I  

Term Structure of Yield Spreads 
 
This table gives the spread data used in this study. The spread data for A, BBB, BB, and B 
bonds come from Citigroup’s yieldbook, and refer to average corporate bond spreads over 
Treasuries for the period 1985 to 1995. The original data contain spreads for maturities of 
1-3 years, 3-7 years, 7-10 years, and 10+ years for A and BBB bonds. We assign these 
spreads, respectively, to maturities of 2, 5, 8, and 10 years, and we linearly interpolate the 
spreads to estimate the maturities that are not available in the raw data. The spreads for 
BB and B bonds are reported as an average across all maturities. Data for AAA and AA 
bonds come from Huang and Huang (2003). The original data contain maturities of 4 years 
(1985 to 1995 averages, from Duffee (1998)), and 10 years (1973-1993 averages, from 
Lehman’s bond index). We linearly interpolate to estimate the maturities that are not 
available in the raw data. 
 
 Ratings 

Maturity AAA AA A BBB BB B 

1 0.51% 0.52% 1.09% 1.57% 3.32% 5.45% 

2 0.52% 0.56% 1.16% 1.67% 3.32% 5.45% 

3 0.54% 0.61% 1.23% 1.76% 3.32% 5.45% 

4 0.55% 0.65% 1.30% 1.85% 3.32% 5.45% 

5 0.56% 0.69% 1.38% 1.94% 3.32% 5.45% 

6 0.58% 0.74% 1.28% 1.89% 3.32% 5.45% 

7 0.59% 0.78% 1.18% 1.84% 3.32% 5.45% 

8 0.60% 0.82% 1.08% 1.79% 3.32% 5.45% 

9 0.62% 0.87% 1.20% 1.84% 3.32% 5.45% 

10 0.63% 0.91% 1.32% 1.90% 3.32% 5.45% 
 
 
 



 
Table II 

Fraction of the Yield Spread Due to Default 
 
This table reports the fractions of yield spreads over benchmark Treasury bonds that are due 
to default, for each credit rating and different maturities. The first column uses Huang and 
Huang (2003)’s Table 7, which reports calibration results from their model under the 
assumption that market asset risk premia are countercyclically time varying. The second 
column uses Longstaff, Mittal and Neis’ (2005) Table IV, which reports model-based ratios of 
the default component to total corporate spread. The third column uses results from Chen, 
Collin-Dufresne and Goldstein (2005). The fraction reported for BBB bonds is the ratio of the 
BBB minus AAA spread over the BBB minus Treasury spread. The fourth column uses results 
from Cremers et al. (2005). The fractions reported are the ratios between the 10-year spreads 
in Cremers et al.’s Table 4 (model with priced jumps), and the corresponding 10-year spreads 
in Table I of this paper. The fifth and sixth columns report for each rating and maturity the ratio 
between the default component of the spread and the total spread, where the default 
component is calculated as the spread minus the 1-year AAA spread. The seventh and eight 
columns report for each rating and maturity the ratio between the default component of the 
spread and the total spread, where the default component is calculated as the spread minus 
the difference between swap and Treasury rates, for the period 2000 to 2004. NA = not 
available. 

 
 Huang 

and 
Huang 
(2003) 

Longstaff 
et al. 
(2005) 

Chen 
et al. 
(2005) 

Cremers 
et al. 
(2005) 

Method 1  
(AAA spread) 

Method 2 
(spreads over 
swaps) 

Credit 
rating 

10-year 
spread 

5-year 
spread 

4-year 
spread

10-year 
spread 

4-year 
spread

10-year 
spread 

5-year 
spread 

10-year 
spread 

AAA 0.208 NA 0.000 0.603 0.073 0.190 NA NA 

AA 0.200 0.510 NA 0.505 0.215 0.440 NA NA 

A 0.234 0.560 NA 0.512 0.609 0.613 0.511 0.570 

BBB 0.336 0.710 0.702 0.627 0.724 0.731 0.732 0.729 

BB 0.633 0.830 NA NA 0.846 0.846 0.872 0.872 

B 0.833 NA NA NA 0.906 0.906 0.916 0.916 
 

 



Table III 
Risk-Neutral and Historical Default Probabilities 

 
This table reports cumulative risk-neutral probabilities of default calculated from bond yield 
spreads, as explained in the text. The table also reports historical cumulative probabilities of 
default (data from Moodys, averages 1970 to 2001), and ratios between the risk-neutral 
probabilities and the historical ones for 5-year and 10-year maturities. In the last column, we 
report the average ratio between risk-neutral and historical probabilities across all maturities 
from 1 to 10. 

 
 5-year 10-year 

Credit 
rating 

Historical Risk-Neutral Ratio Historical Risk-Neutral Ratio Average 
Ratio 

AAA 0.14% 0.54% 3.83 0.80% 1.65% 2.07 3.57 

AA 0.31% 1.65% 5.31 0.96% 6.75% 7.04 6.22 

A 0.51% 7.07% 13.86 1.63% 12.72% 7.80 9.95 

BBB 1.95% 11.39% 5.84 5.22% 20.88% 4.00 4.84 

BB 11.42% 21.07% 1.85 21.48% 39.16% 1.82 1.86 

B 31.00% 34.90% 1.13 46.52% 62.48% 1.34 1.21 
 



Table IV 
Risk-Adjusted Costs of Financial Distress 

 
This table reports our estimates of the NPV of the costs of financial distress expressed as 
a percentage of pre-distress firm value, calculated using historical probabilities (first 
column) and risk-adjusted probabilities (remaining columns). It also reports in the last row 
the increase in the NPV of distress costs that is associated with a rating change from AA 
to BBB. In Panel A we use an estimate for the loss in value given distress of 16.5%. The 
valuation in the second column (benchmark valuation) assumes recovery of Treasury and 
a recovery rate of 0.41. It uses bond coupons that are equal to the default component of 
the yields, and employs method 1 (1-year AAA spread) to calculate the default component 
of spreads. In the third column we change the recovery rate to 0.25. In the fourth column 
we use a recovery of face value (RFV) assumption. In the fifth column we assume that 
coupons are one-half times the default component of spreads, and in the sixth column we 
assume that coupons are one and a half times the default component of spreads. In the 
seventh column we use Huang and Huang’s (2003) fractions due to default to calculate 
the default component of spreads. In Panel B we vary the estimate for the loss in value 
given distress, and report the NPV of distress costs calculated using historical probabilities 
(first, third, and fifth columns) and risk-adjusted probabilities (remaining columns). The 
risk-adjusted valuations make the same assumptions as the benchmark valuation in Panel 
A. In the first and second columns we assume a loss given default of 16.5%. In the third 
and fourth columns we assume a loss given default of 10% and in the fifth and sixth 
columns we assume a loss given default of 23%.  

 

Panel A (φ  = 0.165) 

Credit 
Rating 

Historical Benchmark Recovery 
0.25 

RFV Coupon 
0.5*Yield 

Coupon   
1.5*Yield 

Huang 
and 
Huang 
(2003) 

AAA 0.25% 0.32% 0.25% 0.31% 0.06% 0.50% 0.49% 

AA 0.29% 1.84% 1.47% 1.77% 1.52% 2.07% 0.63% 

A 0.51% 3.83% 3.17% 3.66% 3.49% 4.10% 1.14% 

BBB 1.40% 4.53% 3.70% 4.24% 4.29% 4.71% 2.28% 

BB 4.21% 6.81% 5.59% 6.15% 6.70% 6.88% 5.52% 

B 7.25% 9.54% 8.04% 8.44% 9.47% 9.58% 9.15% 

BBB 
minus 
AA 

 
1.11% 

 
2.69% 

 
2.23% 

 
2.47% 

 
2.77% 

 
2.64% 

 
1.65% 

 
 
 

 



 
Table IV (cont.) 

Risk-Adjusted Costs of Financial Distress 
 

Panel B (variations in φ ) 

       φ  = 0.165 φ = 0.10 φ = 0.23 

Credit 
Rating 

Historical Risk-
adjusted 

Historical Risk-
adjusted 

Historical Risk-
adjusted 

AAA 0.25% 0.32% 0.15% 0.19% 0.35% 0.45% 

AA 0.29% 1.84% 0.17% 1.11% 0.40% 2.56% 

A 0.51% 3.83% 0.31% 2.32% 0.71% 5.34% 

BBB 1.40% 4.53% 0.85% 2.75% 1.95% 6.32% 

BB 4.21% 6.81% 2.55% 4.13% 5.87% 9.50% 

B 7.25% 9.54% 4.39% 5.78% 10.10% 13.30% 

BBB 
minus  
AA 

 
1.11% 

 
2.69% 

 
0.67% 

 
1.63% 

 
1.55% 

 
3.75% 

 



 
Table V 

Typical Leverage Ratios for Each Bond Rating 
 
This table reports typical leverage ratios calculated for different bond ratings. The first two 
columns are drawn from Molina (2005). The first column shows predicted book leverage 
ratios from Molina’s Table VI. These values are calculated using Molina's regression 
model (Table V), with values of the control variables set equal to those of the average firm 
with a kink of approximately two in Graham's (2000) sample. Column II replicates the book 
leverage ratios in the simple summary statistics of Molina’s Table IV. Column III reports 
average leverage ratios for firms of a given credit rating, from Huang and Huang (2003). 
The original source of these data is Standard and Poor’s (1999). 
 
 Molina (2005)  

Credit 
rating 

Summary 
statistics 

Regression 
model 

Huang and Huang 
(2003) 

AAA 9.00% 3.00% 13.08% 

AA 17.00% 16.00% 21.18% 

A 22.00% 28.00% 31.98% 

BBB 28.00% 33.00% 43.28% 

BB 34.00% 46.00% 53.53% 

B 42.00% 57.00% 65.70% 
  
 
 



Table VI 
Tax Benefits of Debt against Costs of Financial Distress 

 
This table reports the tax benefits of debt and the difference between the tax benefits of 
debt and the costs of financial distress. The risk-adjusted valuations assume recovery of 
Treasury and a recovery rate of 0.41. They use bond coupons that are equal to the default 
component of the yields, and employ method 1 (1-year AAA spread) to calculate the 
default component of spreads. In Panel A, the relation between ratings and leverage is 
estimated using Molina’s (2005) regression model. This relation is reported in this paper in 
the first column of Table VI. The first column depicts tax benefits of debt calculated for 
each leverage ratio as explained in the text. The remaining columns show the difference 
between tax benefits and distress costs. In the second and third columns we assume that 
losses given default are equal to 16.5%. In the fourth and fifth columns we assume that 
losses give default are equal to 10%, and in the sixth and seventh columns we assume a 
loss given default of 23%. In Panel B, we also report results that obtain when we change 
the relationship between leverage and bond ratings. The second to fourth columns use 
Molina’s (2005) summary statistics and the fifth to seventh columns use the relation 
between leverage and ratings reported by Huang and Huang (2003). We assume a loss 
given default equal to 0.165 in all calculations reported in Panel B.  
 

Panel A: Predicted Leverage Ratios from Molina (2005) 
  Tax benefits minus cost of distress 

  φ = 0.165 φ = 0.10 φ = 0.23 

Credit 
rating 

Tax 
benefits 
of debt 

Historical Risk-
adjusted 

Historical Risk-
adjusted 

Historical Risk-
adjusted 

AAA 0.47% 0.22% 0.15% 0.32% 0.28% 0.12% 0.02% 

AA 2.51% 2.22% 0.67% 2.34% 1.40% 2.11% -0.05% 

A 4.40% 3.89% 0.56% 4.09% 2.07% 3.69% -0.95% 

BBB 5.18% 3.78% 0.65% 4.33% 2.43% 3.23% -1.14% 

BB 7.22% 3.01% 0.41% 4.67% 3.09% 1.35% -2.28% 

B 8.95% 1.70% -0.59% 4.56% 3.17% -1.15% -4.35% 

BBB 
minus 
AA 

 
2.67% 

     

 
 
 

 
 



Table VI (cont.) 
Tax Benefits of Debt against Costs of Financial Distress 

 
Panel B: φ = 0.165, Variations in Leverage Ratios 

 Molina's (2005) summary statistics Huang and Huang (2003) 

  
Tax benefits minus 

cost of distress  
Tax benefits minus 

cost of distress 

Credit 
rating 

Tax 
benefits Historical

Risk-
adjusted 

Tax 
benefits Historical

Risk-
adjusted 

AAA 1.41% 1.16% 1.09% 2.05% 1.80% 1.73% 

AA 2.67% 2.38% 0.83% 3.33% 3.04% 1.49% 

A 3.45% 2.94% -0.38% 5.02% 4.51% 1.19% 

BBB 4.40% 3.00% -0.14% 6.79% 5.40% 2.26% 

BB 5.34% 1.13% -1.48% 8.40% 4.19% 1.59% 

B 6.59% -0.65% -2.95% 10.31% 3.07% 0.77% 

BBB 
minus 
AA 1.73%   3.47%   

 



A. One-year par bond valuation tree 

 ρ (1+y) 

 

Figure 1. Valuation trees, one-period example. This figure 
shows the trees for the valuations described in Section I.A. 
Panel A shows the payoff for bond investors, and Panel B 
shows the deadweight costs of financial distress in default and 
non-default states. The 1-year risk-adjusted probability of 
default is equal to q. 

 
q 
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B. One-year valuation tree for distress costs 

 φ
 

q 

Φ

1 - q 0 



 

 

Figure 2: Valuation tree, general model. This figure shows the 
valuation tree for the model in Section II. It shows the time 
evolution of deadweight costs of financial distress for a firm that is 
currently at the initial node (date 0). The subscripts (0,t) refer to 
the current date (date 0) and to a future default date (date t). The 
probability q0,t is thus the risk-adjusted marginal probability of 
default in year t, conditional on no default until year t-1 and 
evaluated as of date 0. 

(1 – q0,1)  

q0,2

0Φ

1,0φ

2,0φ

3,0φ

q0,1 Prob. default in year 3  = (1 – Q0,2)* q0,3

q0,3

(1 – q0,2)  

Prob. surviving beyond year 2 =  

(1 – q0,3)  

…. (1 – Q0,2) = (1 – q0,1)*(1 – q0,2)
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Φ
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Figure 3: Valuation tree, time variation in spreads. This 
figure shows the valuation tree for the model in Section IV.F. It 
shows the time evolution of spreads and risk-adjusted default 
probabilities for a firm that is currently at the initial node (time 
0). The probability that spreads will be high next period is 
equal to x. The probability qH is the probability of default in 
time 2 conditional on high spreads, and qL is the probability of 
default in time 2 conditional on low spreads. 
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Figure 4: This figure shows the difference between the 
present value of the tax benefits of debt and the NPV of 
distress costs, expressed as a percentage of pre-distress firm 
value, as a function of the firm’s bond rating. The upper curve 
uses the NPV of distress costs calculated with historical 
probabilities of default, and the lower curve uses the NPV of 
distress that is calculated with risk-adjusted default 
probabilities. The present value of tax benefits assumes the 
marginal tax benefits estimated by Graham (2000), and uses 
the relation between leverage and bond ratings estimated by 
Molina (2005).  


